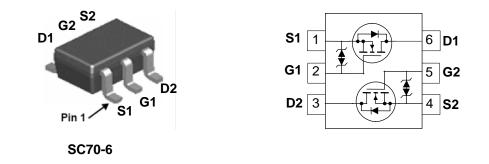
Product specification

FDG1024NZ


TY Semicondutor[®]

Features

- Max $r_{DS(on)}$ = 175 m Ω at V_{GS} = 4.5 V, I_D = 1.2 A
- Max $r_{DS(on)}$ = 215 m Ω at V_{GS} = 2.5 V, I_D = 1.0 A
- Max $r_{DS(on)}$ = 270 m Ω at V_{GS} = 1.8 V, I_D = 0.9 A
- Max r_{DS(on)} = 389 mΩ at V_{GS} = 1.5 V, I_D = 0.8 A
- HBM ESD protection level >2 kV (Note 3)
- Very low level gate drive requirements allowing operation in 3 V circuits (V_{GS(th)} < 1.5 V)</p>
- Very small package outline SC70-6
- RoHS Compliant

MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted

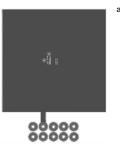
Symbol	Parameter			Ratings	Units	
V _{DS}	Drain to Source Voltage			20	V	
V _{GS}	Gate to Source Voltage			±8	V	
1	-Continuous	$T_A = 25^{\circ}C$	(Note 1a)	1.2	٨	
D	-Pulsed			6	— A	
D	Power Dissipation	$T_A = 25^{\circ}C$	(Note 1a)	0.36	10/	
P _D	Power Dissipation	$T_A = 25^{\circ}C$	(Note 1b)	0.30	W	
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to +150	°C	

Thermal Characteristics

$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient	(Note 1a)	350	°C/W
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient	(Note 1b)	415	C/VV

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
.24	FDG1024NZ	SC70-6	7 "	8 mm	3000 units


Product specification

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units	
Off Chara	acteristics						
BV _{DSS}	Drain to Source Breakdown Voltage	I _D = 250 μA, V _{GS} = 0 V	20			V	
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, referenced to 25 °C		14		mV/°C	
IDSS	Zero Gate Voltage Drain Current	$V_{DS} = 16 V, V_{GS} = 0 V$			1	μΑ	
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 8 V, V_{DS} = 0 V$			±10	μΑ	
On Chara	octeristics						
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 250 \ \mu A$	0.4	0.8	1.0	V	
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, referenced to 25 °C		-3		mV/°C	
-		$V_{GS} = 4.5 \text{ V}, \ I_D = 1.2 \text{ A}$		160	175		
		$V_{GS} = 2.5 \text{ V}, I_D = 1.0 \text{ A}$		185	215	mΩ	
r	Static Drain to Source On Resistance	$V_{GS} = 1.8 \text{ V}, \ I_D = 0.9 \text{ A}$		232	270		
r _{DS(on)}	Static Drain to Source On Resistance	$V_{GS} = 1.5 \text{ V}, \ I_D = 0.8 \text{ A}$		321	389		
		V _{GS} = 4.5 V, I _D = 1.2 A, T _J =125 °C		220	259		
9 _{FS}	Forward Transconductance	V _{DD} = 5 V, I _D = 1.2 A		4		S	
Dynamic	Characteristics						
C _{iss}	Input Capacitance			115	150	pF	
C _{oss}	Output Capacitance	──V _{DS} = 10 V, V _{GS} = 0 V, ──f = 1 MHz		25	35	pF	
C _{rss}	Reverse Transfer Capacitance			20	25	pF	
R _g	Gate Resistance			4.6		Ω	
Switching	g Characteristics						
t _{d(on)}	Turn-On Delay Time			3.7	10	ns	
t _r	Rise Time	V _{DD} = 10 V, I _D = 1.2 A,		1.7	10	ns	
t _{d(off)}	Turn-Off Delay Time	$V_{GS} = 4.5 \text{ V}, \text{ R}_{GEN} = 6 \Omega$		11	19	ns	
t _f	Fall Time			1.5	10	ns	
Q _g	Total Gate Charge	V 45.4.4 40.4		1.8	2.6	nC	
Q _{qs}	Gate to Source Charge	— V _{GS} = 4.5 V, V _{DD} = 10 V, — I _D = 1.2 A		0.3		nC	
Q _{gd}	Gate to Drain "Miller" Charge	-1D = 1.2 A		0.4		nC	
•	urce Diode Characteristics						
I _S	Maximum Continuous Drain-Source Diode	Forward Current			0.3	Α	
V _{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0 V, I_S = 0.3 A$ (Note 2)		0.7	1.2	V	
50				1		L	

V _{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0 V, I_S = 0.3 A$ (Note 2)	0.7	1.2	V
t _{rr}	Reverse Recovery Time	− I _F = 1.2 A, di/dt = 100 A/μs	10	20	ns
Q _{rr}	Reverse Recovery Charge	$-1_{\rm F} = 1.2$ A, di/dt = 100 A/µs	1.9	10	nC
NOTES:					

1. $R_{0,IA}$ is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. $R_{0,IC}$ is guaranteed by design while $R_{0,IA}$ is determined by the user's board design.

a. 350 °C/W when mounted on a 1 in² pad of 2 oz copper.

b. 415 °C/W when mounted on a minimum pad of 2 oz copper.

Pulse Test: Pulse Width < 300 μs, Duty cycle < 2.0%.
The diode connected between the gate and source serves only as protection against ESD. No gate overvoltage rating is implied.